

Confirmation and Quantification of Synthetic Cannabinoids in Herbal Incense Blends by Triple Quadrupole GC/MS

Application Note

Forensics

Abstract

With the rapid and dangerous growth in popularity of herbal incense blends containing synthetic cannabinoids, today's forensic laboratories are challenged to confirm and quantify the controlled forms at trace levels in complex matrices with confidence. Here, a representative sample of 17 of the more than 30 known synthetic cannabinoids is analyzed to demonstrate the applicability of a Triple Quadrupole GC/MS method. The method's selectivity reduces matrix effects and improves signal-to-noise, significantly increasing confidence in analytical results. The method also eliminates the need for post data-acquisition processing such as mass spectral deconvolution.

Agilent Technologies

Authors

Anthony Macherone, Ph.D. Thomas J. Gluodenis, Jr., Ph.D. Agilent Technologies, Inc. 2850 Centerville Road Wilmington, DE 19808 USA

Introduction

Synthetic cannabinoids are cannabinomimetic compounds originally synthesized for medical research. The rapid growth in use of these compounds by teens and young adults, and widespread availability in convenience stores, head shops, and the Internet is of serious concern in many countries including the U.S.

Synthetic cannabinoids fall into the three structural types shown in Figure 1. The first type (1A) possesses a structural scaffold similar to that of tetradydrocannabinol. The second type (1B) is synthetic napthoylindole analogues. The third type (1C) is phenylcyclohexyl moieties. A common motif inherent to most synthetic cannabinoids is a short aliphatic chain known to interact with the cannabinoid CB1 and CB2 receptors.

Figure 1. Synthetic cannabinoids fall into the three distinct structural patterns.

Synthetic cannabinoids are usually formulated in botanical matrices (Figure 2) and marketed for sale as herbal incense. Because they are surreptitiously labeled as *not for human consumption*, there is no oversight by the U.S. Food and Drug Administration (FDA). As such, there is no control over their manufacture, raw material quality, potency, and overall safety. The lack of homogeneity and variation in potency of these mixtures can lead to inadvertent overdosing with severe short-term complications including convulsions, anxiety attacks, elevated heart rate, increased blood pressure, vomiting, hallucinations, paranoia, and disorientation. Long-term health effects are unknown.

Figure 2. Synthetic cannabinoids are often formulated in botanical matrices.

Though many countries, including the U.S., have banned specific forms of these compounds, the large and growing number of synthetic cannabinoids has impeded their control. As soon as legislation is passed banning use of a specific form, a new one is synthesized and introduced. Due to the severe health risks and public threat associated with their use, the U.S Drug Enforcement Administration (DEA) exercised its emergency authority to control five specific synthetic cannabinoids for at least one year while it and the U.S. Department of Health and Human Services (DHHS) determine whether permanent control is warranted [1,2]. The DEA now controls:

- JWH-018
- JWH-073
- JWH-200
- CP-47,497 (C7)
- CP-47,497 (C8)

HU-210 is controlled under a previous DEA ruling. Over 20 uncontrolled forms remain and the number is growing.

Confirmation and quantification of synthetic cannabinoid analogs and homologs by single quadrupole gas chromatography/mass spectrometry (GC/MS) presents numerous analytical challenges. At the outset, the botanical matrix is surprisingly difficult to homogenize. Subsequent extraction requires a general approach because synthetic cannabinoids contain a variety of functional groups. However, a general approach extracts a large amount of matrix substances which in turn produce a complex chromatogram with a substantial number of peaks.

The blends often contain a mixture of synthetic cannabinoids which, due to their structural similarities and isomeric forms, co-elute producing overlapped mass spectra. Adding to the challenge, synthetic cannabinoids can be extremely potent and thus present at trace levels relative to the matrix. Though previously demonstrated as an effective and easy to replicate approach [3, 4], single quadrupole GC/MS analyses of these matrices yields very complex data that requires significant effort to interpret without the help of special post acquisition processing software, for example mass spectral deconvolution software.

In this application, a representative sample of an herbal blend is analyzed for the presence of synthetic cannabinoids to demonstrate the applicability of an alternative GC/MS/MS approach that offers enhanced selectivity and sensitivity, and that eliminates the need for mass spectral deconvolution.

Experimental

Reference standards and samples

Listed in Table 3, seventeen of the more than 30 known synthetic cannabinoids were chosen for the development of the GC/MS/MS method. These compounds were chosen to capture the structural diversity of synthetic cannabinoids found in popular herbal blends.

The herbal blends analyzed were EX 565, K2 Blondie, K4 Purple Haze, K3 XXX, Lunar Diamond, Zombie, and K2 Diamond.

Sample Preparation

Homogenization

The botanical material used as the carrier for synthetic cannabinoids, for example Damiana (*Tumera diffusa*), is soft and light. These properties make it difficult to crush into a homogenous form for representative sampling. For this analysis, approximately 500 mg of sample was ground between two 5 inch by 5 inch sheets of 100-grit sandpaper until a finely divided powder was obtained.

Extraction

The multiple functional groups associated with synthetic cannabinoids necessitate a generalized extraction approach. For this analysis, an acid/base combined extraction followed by centrifugation was employed. It is also possible to perform the extraction using methanol incubation. Either approach will extract substantial amounts of matrix components.

Using the acid/base approach, an aliquot of homogenized sample (50 - 100 mg) was acidified by adding 1 mL of de-ionized water, followed by three drops of 10% hydrochloric acid. Next, 1 mL of solvent (95% methylene chloride/5% isopropanol v/v) was added and the sample mixed. The sample was then centrifuged and the bottom solvent layer retained and set aside. Two drops of concentrated ammonium hydroxide and 1 mL of the solvent (95% methylene chloride/5% isopropanol v/v) were added to the remaining aqueous mixture (top layer). The sample was mixed and centrifuged again. The bottom solvent layer collected, and then mixed briefly. The sample was then ready for GC/MS/MS analysis.

Derivatization

Some synthetic cannabinoids, for example HU-210, contain multiple, active, polar functional groups such as phenols and alcohols, which can make them much less amenable to GC/MS analysis. To enhance the chromatographic performance and sensitivity of the method for these compounds, derivatization with BSTFA (N,o-Bis (TrimethylsilyI) trifluoroacetamide) with 1% TMCS (trimethylchlorosilane) can be used to cap the functional groups and to produce more intense ions for identification and quantification. Derivatization is not required for the analysis presented in this application note.

GC/MS/MS Analysis

The GC/MS/MS analyses were performed on an Agilent 7000 Series Triple Quadrupole GC/MS system which couples the Agilent 7890A Gas Chromatograph with the Agilent 7000B Mass Spectrometer.

The Agilent 7890A Gas Chromatograph was equipped with a HP-5MS UI column. Table 1 lists the Gas Chromatograph run conditions.

The Agilent 7000B Mass Spectrometer was operated in electron impact ionization (EI) MS/MS mode using multiple reaction monitoring (MRM) for all analytes and reference standards. Table 2 lists the Mass Spectrometer operating conditions.

Table 1. Gas Chromatograph Run Conditions

Table 3. Analyte List with Associated Precursor and Product lons, Optimized Collision Energies, and Retention Times

nameionone or growtime (mininjection modePulsed split-lessAM-6944352322710.918inlet temperature300 °CAM-6944352201313injection volume1 mLCP-47-497-C837716733297.967aarrier gas12 mL/minCP-47-497-C8377167339.3061010.684Ven program80 °C (hold 0.17 min), then 3° C/min to 300 °C (hold 0.5 min), then 5° C/min to 300 °C (hold 0.5 min), then 5°C/min to 300 °C (hold 0.5 min), then 5°C/min to 300 °C (hold 0.5 min), then 5°C/min 0.300 °C (hold 0.5 min), then 5°	Agilent 7890A Gas Chromatograph run conditions			nzeu oomision En	0		B () (
net 300 °C Adv 54 20 13 nijection volume 1 mL CP 47.497.C8 377 191 29 7.967 Zarrier gas Helium, constant flow mode, 1 mL, mel 30 °C (hold 0.5 min), then 30 °C (h	Column 1	HP-5MS UI (Agilent Santa Clara, CA)	Compound name	Precursor ion	Product ion	Collision energy	Retention time (min)
niječion volume 1 mL CP 47.487-C83 377 191 29 7.967 Zarrier gas Helium, constant flow mode, 1.2 mL/min CP 47.487-C83 377 167 33 Joben program 80 °C (hold 0.17 min), then 30 °C/min to 300 °C (hold 0.5 min), then 5°C/min to 300 °C (hold 0.5 min), then 5°C/min to 300 °C (hold 5.5 min). HU.211 530 446 13 9.306 fransfer line temperature 325 °C JWH.015 310 268 23 full 25 °C JWH.015 327 167 23 10.875 Agilent 70008 Mass Spectrometer Operating Conditions JWH.018 341 167 23 10.875 Agilent 70008 Mass Spectrometer operating conditions JWH.081 371 197 23 13.238 ain factor 50 JWH.081 354 269 31 12.226 calsistion parameters Electron impact ionization, multiple reaction moliting JWH.133 1269 93 23 calsistion gas Nitrogen, 1.5 mL/min Helium quench gas 2.25 mL/min JWH.133 269 93 23 collision cell energy was opticar from the reference standards, followed by product ion s	Injection mode	Pulsed split-less	AM-694	435	232	27	10.918
Arrier gas Helium, constant flow mode, 1.2 mL/min 1.2 mL/min 1.0 mL/min	Inlet temperature	300 °C	AM-694	435	220	13	
1.2 mL/minHU 21150446139.306Deen program80 °C (hold 0.17 min), then 5 °C/min to 300 °C (hold 5 min), then 5 °C/min to 300 °C (hold 5 min)HU 21144629921JWH 0153273101010.684JWH 0153102682311JWH 0153102682311JWH 0153271672311.875JWH 01832411672310.875JWH 0133271672310.875JWH 0133271672313.238JuneAutotuneJWH 07331025423JuneAutotuneJWH 0813711972313.238Jain factor50JWH 0813542693112Callision gasNitrogen, 1.5 mL/min Helium quench gas 2.25 mL/min Helium quench gas 2.25 mL/minJWH 1333122682312.226JWH 133312269932314.373371672314.373JWH 2003841002314.373JWH 13331214.37319.071JWH 2003841002314.373JWH 20133521439.954JWH 2003841002314.373JWH 201335214310.007JWH 20139521414417JWH 201335214310.071JWH 201316214144 <td< td=""><td>Injection volume</td><td>1 mL</td><td>CP-47-497-C8</td><td>377</td><td>191</td><td>29</td><td>7.967</td></td<>	Injection volume	1 mL	CP-47-497-C8	377	191	29	7.967
by en program 80 °C (hold 0.17 min), then 30 °C (min to 300 °C (hold 0.5 min), then 30 °C (hold 0.5 min), then 30 °C (hold 0.5 min), then 30 °C (hold 0.5 min), HU.211 466 99 21 fransfer line temperature 325 °C JWH-015 327 310 10 10.684 faile 2. Mass Spectrometer Operating Conditions JWH-015 327 167 23 11.375 faile 2. Mass Spectrometer Operating Conditions JWH-018 324 254 23 12 faile 2. Mass Spectrometer Operating Conditions JWH-018 371 197 23 13.238 faile factor 50 JWH-018 354 269 31 12.226 func Autotune JWH-031 312 269 12 7.346 collision gas Electron impact ionization, multiple reaction monitoring JWH-133 312 269 12 7.346 JWH tansitions were develowed empirically beginning with the collection of full-scar spectra from the reference standards, followed by product ion pairs for the analysis. Next, the pollision cell energy was optimized to achieve the maximum on intensity for each unique transition. Table 3 provides the malytel list with the associated precursor and product ions, and the optimized collision energies.	Carrier gas		CP-47-497-C8	377	167	33	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			HU-211	530	446	13	9.306
then 5 °C/min to 340 °C (hold 5 min) JWH-015 327 310 10 10.884 fransfer line temperature 325 °C JWH-015 310 268 23 fransfer line temperature 325 °C JWH-018 341 167 23 11.375 fable 2. Mass Spectrometer Operating Conditions JWH-018 321 167 23 10.875 Agilent 7000B Mass Spectrometer Operating conditions Autotune JWH-073 327 167 23 13.238 Sain factor 50 JWH-081 354 269 31 12.266 caujisition parameters Electron impact ionization, multiple reaction monitoring JWH-122 338 268 23 12.226 JWH-123 JWH-133 312 269 12 7.348 JWH-124 JWH-133 312 269 12 7.348 JWH-203 JWH-203 384 100 23 14.373 JWH-203 329 214 34 30 10.07	Oven program	then 30 °C/min to 300 °C (hold 0.5 min),	HU-211	446	299	21	
Fable 2. Mass Spectrometer Operating Conditions JWH-018 341 167 23 11.375 Agilent 7000B Mass Spectrometer operating conditions JWH-018 324 254 23 10.875 Agilent 7000B Mass Spectrometer operating conditions JWH-018 310 254 23 10.875 Agilent 7000B Mass Spectrometer operating conditions JWH-018 310 254 23 11.325 Main factor 50 JWH-018 310 254 23 12.226 JWH-081 354 269 31 12.226 JWH-122 338 268 23 12.226 JWH-122 338 269 12 7.348 JWH-122 298 181 12 Solvent delay 7.0 min JWH-120 384 100 23 14.373 JWH-200 384 100 23 JWH-201 100 56 17 MRM transitions were developed empirically beginning on intensity for each unique transition. Table 3 provides the maximum on intensity for each unique transition. Table 3 provides the maximum on intensity for each unique transition. Table 3 provides the maximum on intensity for each unique transition. Table 3 provides			JWH-015	327	310	10	10.684
Table 2. Mass Spectrometer Operating Conditions JWH-018 324 254 23 Agilent 7000B Mass Spectrometer operating conditions W1-073 327 167 23 13.238 JWH-073 310 254 23 13.238 JWH-081 371 197 23 13.238 JWH-081 371 197 23 13.238 Acquisition parameters Electron impact ionization, multiple reaction monitoring JWH-081 354 269 31 Collision gas Nitrogen, 1.5 mL/min Helium quench gas 2.25 mL/min JWH-133 312 269 12 7.48 Solvent delay 7.0 min JWH-200 344 100 23 14.373 JWH-200 100 56 77 JWH-203 339 214 3 9.954 JWH-201 100 56 77 JWH-203 335 214 3 10.007 JWH-203 335 214 14 17 JWH-203 316 124 3 10.007 JWH-203 318 180 23 124 3	Transfer line temperature	325 °C	JWH-015	310	268	23	
Table 2. Mass Spectrometer Operating Conditions JWH-073 327 167 23 10.875 Agilent 7000B Mass Spectrometer operating conditions JWH-073 310 254 23 13.238 Sain factor 50 JWH-081 371 197 23 13.238 Acquisition parameters Electron impact ionization, multiple reaction monitoring JWH-081 354 269 31 Solision gas Electron impact ionization, multiple reaction monitoring JWH-122 338 268 23 12.226 JWH-122 298 181 12 7.348 100 23 14.373 Solvent delay 7.0 min JWH-103 329 93 23 14.373 WRM transitions were developed empirically beginning with the collection of full-scan spectra from the reference standards, followed by product ion scanning to identify optimal part spectra from the reference standards, followed by product ion scanning to identify optimal part spectra from the reference standards, followed by product ion scanning to identify optimal part spectra from the reference standards, followed by product ion scanning to identify optimal part spectra from the reference standards, followed by product ion scanning to identify optimal part spectra from the reference standards followed by product ion scanning to identify optimal part for scandards followed by			JWH-018	341	167	23	11.375
Agilent 7000B Mass Spectrometer operating conditions JWH-1073 327 167 23 10.875 Agilent 7000B Mass Spectrometer operating conditions JWH-073 310 254 23 Sain factor 50 JWH-081 371 197 23 13.238 Acquisition parameters Electron impact ionization, multiple reaction monitoring JWH-081 354 269 31 Collision gas Nitrogen, 1.5 mL/min Helium quench gas 2.25 mL/min JWH-122 298 181 12 Solvent delay 7.0 min JWH-200 384 100 23 14.373 MS temperatures Source 300 °C, Quadrupoles 150 °C JWH-200 384 100 23 14.373 MRM transitions were develowed empirically beginning with the collection of full-scan spectra from the reference standards, followed by product ion scanning to identify opti- mal precursor/product ion pairs for the analysis. Next, the collision cell energy was optimized to achieve the maximum on intensity for each unique transition. Table 3 provides the manalyte list with the associated precursor and product ions, and the optimized collision energies. 1251 144 17 9553 JWH-251 144 116 12 12.539 12.539 12.539			JWH-018	324	254	23	
Ture Autorune JWH-081 371 197 23 13.238 Jain factor 50 JWH-081 354 269 31 Acquisition parameters Electron impact ionization, multiple reaction monitoring JWH-122 338 268 23 12.226 Collision gas Nitrogen, 1.5 mL/min Helium quench gas 2.25 mL/min JWH-122 298 181 12 Solvent delay 7.0 min JWH-133 312 269 12 7.348 WR transitions were developed empirically beginning with the collection of full-scan spectra from the reference standards, followed by product ion scanning to identify opti- mal precursor/product ion pairs for the analysis. Next, the collision cell energy was optimized to achieve the maximum on intensity for each unique transition. Table 3 provides the analyte list with the associated precursor and product ions, and the optimized collision energies. 310 100 13 10.027 WR-Sa 318 189 23 10.259 12.539 12.539 JWH-398 318 189 23 12.539 14 17 WR-Sa 264 135 17 144 17 1553 <td colspan="2">Table 2. Mass Spectrometer Operating Conditions</td> <td>JWH-073</td> <td>327</td> <td>167</td> <td>23</td> <td>10.875</td>	Table 2. Mass Spectrometer Operating Conditions		JWH-073	327	167	23	10.875
Jain factor 50 JWH-081 354 269 31 Acquisition parameters Electron impact ionization, multiple reaction monitoring JWH-081 354 269 31 12.226 Collision gas Nitrogen, 1.5 mL/min Helium quench gas 2.25 mL/min JWH-122 298 181 12 7.348 Solvent delay 7.0 min JWH-133 269 93 23 14.373 Solvent delay 7.0 min JWH-200 384 100 23 14.373 MS temperatures Source 300 °C, Quadrupoles 150 °C JWH-200 308 100 23 14.373 JWH-200 100 56 17 9554 1007 100 56 17 VH 201 100 56 17 1007 13 1007 1007 100 56 17 VH 203 214 144 17 1007 1007 100 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 <td< td=""><td colspan="2">Agilent 7000B Mass Spectrometer operating conditions</td><td>JWH-073</td><td>310</td><td>254</td><td>23</td><td></td></td<>	Agilent 7000B Mass Spectrometer operating conditions		JWH-073	310	254	23	
Acquisition parameters Electron impact ionization, multiple reaction monitoring JWH 122 338 268 23 12.226 Collision gas Nitrogen, 1.5 mL/min Helium quench gas 2.25 mL/min JWH 122 338 269 12 7.348 Solvent delay 7.0 min JWH 133 269 93 23 MS temperatures Source 300 °C, Quadrupoles 150 °C JWH 200 384 100 23 14.373 MRM transitions were developed empirically beginning with the collection of full-scan spectra from the reference standards, followed by product ion scanning to identify opti- mal precursor/product ion pairs for the analysis. Next, the collision cell energy was optimized to achieve the maximum on intensity for each unique transition. Table 3 provides the analyte list with the associated precursor and product ions, and the optimized collision energies. JWH 398 318 189 23 JWH 398 318 189 23 12.539 JWH 398 318 189 23	Tune	Autotune	JWH-081	371	197	23	13.238
reaction monitoring Collision gasreaction monitoring Nitrogen, 1.5 mL/min Helium quench gas 2.25 mL/minJWH -12229818112JWH -133312269127.348Solvent delay7.0 minJWH -1332699323WS temperaturesSource 300 °C, Quadrupoles 150 °CJWH -2003841002314.373JWH 2001005617JWH -20333921439.954MRM transitions were developed empirically beginning with the collection of full-scan spectra from the reference standards, followed by product ion scanning to identify opti- mal precursor/product ion pairs for the analysis. Next, the collision cell energy was optimized to achieve the maximum on intensity for each unique transition. Table 3 provides the analyte list with the associated precursor and product ions, and the optimized collision energies.31818923JWH -251144116121212.539JWH -3983181892310.259JWH -3983181892310.259JWH -3983181892310.259JWH -3983181892312.539JWH -3983181892312.539JWH -3983181892312.539JWH -3983181892312.539JWH -3983181892312.539JWH -3983181892312.463JWH -3983181892312.463JWH -398<	Gain factor	50	JWH-081	354	269	31	
Solvent delay Nitrogen, 1.5 mL/min Helium quench gas 2.25 mL/min JWH-122 298 181 12 Solvent delay 7.0 min JWH-133 312 269 12 7.348 Solvent delay 7.0 min JWH-133 269 93 23 MS temperatures Source 300 °C, Quadrupoles 150 °C JWH-200 384 100 23 14.373 MRM transitions were developed empirically beginning with the collection of full-scan spectra from the reference standards, followed by product ion scanning to identify opti- mal precursor/product ion pairs for the analysis. Next, the collision cell energy was optimized to achieve the maximum on intensity for each unique transition. Table 3 provides the analyte list with the associated precursor and product ions, and the optimized collision energies. JWH-251 214 144 17 JWH-251 144 16 12 10.007 13 10.259 JWH-251 144 16 12 10.027 10 10.259 JWH-398 318 189 23 10.259 10.259 JWH-398 318 189 23 10.259 JWH-398 318 189<	Acquisition parameters	reaction monitoring	JWH-122	338	268	23	12.226
Helium quench gas 2.25 mL/min JVH-133 312 299 12 7.348 Solvent delay 7.0 min JVH-133 269 93 23 MS temperatures Source 300 °C, Quadrupoles 150 °C JWH-200 384 100 23 14.373 MRM transitions were developed empirically beginning with the collection of full-scan spectra from the reference standards, followed by product ion scanning to identify optimal precursor/product ion scanning to identify optimal precursor/product ion scanning to identify optimal precursor and provides the maximum on intensity for each unique transition. Table 3 provides the analyte list with the associated precursor and product ions, and the optimized collision energies. JVH-251 214 144 17 JVH-251 214 144 17 9.553 JVH-251 214 144 17 9.553 JVH-251 144 16 12 JVH-251 144 16 12 JVH-398 318 189 23			JWH-122	298	181	12	
Solvent delay 7.0 min JWH-133 269 93 23 MS temperatures Source 300 °C, Quadrupoles 150 °C JWH-200 384 100 23 14.373 MRM transitions were develowed empirically beginning with the collection of full-scan spectra from the reference standards, followed by product ion scanning to identify optimal precursor/product ion pairs for the analysis. Next, the collision cell energy was optimized to achieve the maximum on intensity for each unique transition. Table 3 provides the analyte list with the associated precursor and product ions, and the optimized collision energies. JWH-203 214 144 17 JWH-250 214 144 17 .0.007 0	Collision gas		JWH-133	312	269	12	7.348
MS temperatures Source 300 °C, Quadrupoles 150 °C JWH-200 384 100 23 14.373 MRM transitions were developed empirically beginning with the collection of full-scan spectra from the reference standards, followed by product ion scanning to identify opti- mal precursor/product ion pairs for the analysis. Next, the collision cell energy was optimized to achieve the maximum on intensity for each unique transition. Table 3 provides the analyte list with the associated precursor and product ions, and the optimized collision energies. JWH-203 314 144 17 JWH-250 214 144 17 9.553 JWH-251 214 144 17 JWH-251 144 16 12 JWH-251 144 16 12 JWH-398 318 189 23 JWH-398 318 189 23 JWH-398 318 189 23 RCS-4 264 135 17 RCS-8 254 158 13 12.463 RCS-8 254 158 13 12.463 RCS-8 254 158 14.373	Solvont dolay		JWH-133	269	93	23	
JWH-200 100 56 17 MRM transitions were developed empirically beginning JWH-203 339 214 3 9.954 with the collection of full-scan spectra from the reference JWH-203 214 144 17 standards, followed by product ion scanning to identify opti- JWH-250 335 214 3 10.007 mal precursor/product ion pairs for the analysis. Next, the collision cell energy was optimized to achieve the maximum on intensity for each unique transition. Table 3 provides the analyte list with the associated precursor and product ions, and the optimized collision energies. JWH-251 214 144 17 JWH-250 214 144 17 9.553 JWH-251 214 144 17 9.553 JWH-251 144 116 12 JWH-398 375 201 23 12.539 JWH-398 318 189 23 RCS-4 264 135 17 RCS-8 254 158 13 12.463 RCS-8 254 158 13 12.463 RCS-8 254 144 19	MS temperatures		JWH-200	384	100	23	14.373
with the collection of full-scan spectra from the reference standards, followed by product ion scanning to identify opti- nal precursor/product ion pairs for the analysis. Next, the collision cell energy was optimized to achieve the maximum on intensity for each unique transition. Table 3 provides the analyte list with the associated precursor and product ions, and the optimized collision energies. NWH-251 214 144 17 JWH-250 214 144 17 JWH-251 214 144 17 JWH-251 214 116 12 JWH-251 144 116 12 JWH-398 375 201 23 12.539 JWH-398 318 189 23 RCS-4 321 264 19 10.259 RCS-4 264 135 17 RCS-8 254 158 13 12.463 RCS-8 254 144 19 WIN55 212.3/2 100 70 13 14.373			JWH-200	100	56	17	
with the collection of full-scan spectra from the reference standards, followed by product ion scanning to identify opti- mal precursor/product ion pairs for the analysis. Next, the collision cell energy was optimized to achieve the maximum on intensity for each unique transition. Table 3 provides the analyte list with the associated precursor and product ions, and the optimized collision energies. NWH-251 144 116 12 JWH-251 144 116 12 JWH-398 375 201 23 12.539 JWH-398 318 189 23 RCS-4 321 264 19 10.259 RCS-4 264 135 17 RCS-8 254 158 13 12.463 RCS-8 254 144 19 WIN55 212-3/2 100 70 13 14.373	MRM transitions were developed empirically beginning with the collection of full-scan spectra from the reference standards, followed by product ion scanning to identify opti- mal precursor/product ion pairs for the analysis. Next, the collision cell energy was optimized to achieve the maximum ion intensity for each unique transition. Table 3 provides the analyte list with the associated precursor and product ions, and the optimized collision energies.		JWH-203	339	214	3	9.954
mal precursor/product ion pairs for the analysis. Next, the collision cell energy was optimized to achieve the maximum on intensity for each unique transition. Table 3 provides the analyte list with the associated precursor and product ions, and the optimized collision energies. JWH-250 214 144 17 9.553 JWH-251 214 144 17 9.553 JWH-251 144 116 12 JWH-398 375 201 23 12.539 JWH-398 318 189 23 RCS-4 321 264 19 10.259 RCS-4 264 135 17 RCS-8 254 158 13 12.463 RCS-8 254 144 19 WIN55 212-3/2 100 70 13 14.373			JWH-203	214	144	17	
collision cell energy was optimized to achieve the maximum on intensity for each unique transition. Table 3 provides the analyte list with the associated precursor and product ions, and the optimized collision energies. JWH-251 214 144 17 9.553 JWH-251 214 144 17 9.553 JWH-251 144 16 12 JWH-251 144 116 12 JWH-251 144 116 12 JWH-251 JWH-398 375 201 23 12.539 JWH-398 318 189 23 RCS-4 321 264 19 10.259 RCS-4 264 135 17 12.463 RCS-8 254 158 13 12.463 RCS-8 254 144 19 12.463 WIN55 212-3/2 100 70 13 14.373			JWH-250	335	214	3	10.007
on intensity for each unique transition. Table 3 provides the analyte list with the associated precursor and product ions, and the optimized collision energies. JWH-251 214 144 17 9.553 JWH-251 144 116 12 JWH-398 375 201 23 12.539 JWH-398 318 189 23 RCS-4 321 264 19 10.259 RCS-4 264 135 17 RCS-8 254 158 13 12.463 RCS-8 254 144 19 14.373			JWH-250	214	144	17	
analyte list with the associated precursor and product ions, JWH-251 144 116 12 JWH-398 375 201 23 12.539 JWH-398 318 189 23 RCS-4 321 264 19 10.259 RCS-4 264 135 17 RCS-8 254 158 13 12.463 RCS-8 254 144 19 WIN55 212-3/2 100 70 13 14.373			JWH-251	214	144	17	9.553
and the optimized collision energies. JWH-398 375 201 23 12.539 JWH-398 318 189 23 RCS-4 321 264 19 10.259 RCS-4 264 135 17 RCS-8 254 158 13 12.463 RCS-8 254 144 19 WIN55 212-3/2 100 70 13 14.373			JWH-251	144	116	12	
RCS-43212641910.259RCS-426413517RCS-82541581312.463RCS-825414419WIN55 212-3/2100701314.373			JWH-398	375	201	23	12.539
RCS-426413517RCS-82541581312.463RCS-825414419WIN55 212-3/2100701314.373			JWH-398	318	189	23	
RCS-82541581312.463RCS-825414419WIN55 212-3/2100701314.373			RCS-4	321	264	19	10.259
RCS-825414419WIN55 212-3/2100701314.373			RCS-4	264	135	17	
WIN55 212-3/2 100 70 13 14.373			RCS-8	254	158	13	12.463
			RCS-8	254	144	19	
WIN55 212-3/2 100 56 15			WIN55 212-3/2	100	70	13	14.373
			WIN55 212-3/2	100	56	15	

Results and Discussion

In a GC/MS/MS MRM experiment, the target analyte is selectively isolated from the matrix. As shown in Figure 3, the first quadrupole mass filter isolates a single precursor ion which is allowed to pass into the collision cell. In the collision cell, the precursor ion is fragmented by a collision gas and an applied electrical voltage – a process called collision induced dissociation (CID). CID fragments the precursor ion into specific and predictable product ions. The second quadrupole mass filter is set to pass only the specific product ions designated by the user. The most intense ion, the quantifier ion, is used for quantification. The qualifier ion, when found in the correct abundance ratio with the quantifier, is used for confirmation.

Even if an interfering ion is inadvertently allowed to pass through the first quadrupole into the collision cell, the likelihood that the interfering ion would yield the same product ions as the analyte precursor ion is extremely low. In this manner, chemical noise is entirely separated from signal, increasing the signal-to-noise ratio and thus sensitivity.

Compared to performing selected ion monitoring (SIM) using a single quadrupole mass spectrometer, the MRM technique made possible by GC/MS/MS systems offers significantly improved selectivity and sensitivity for the detection of tracelevel synthetic cannabinoids in complex matrices such as herbal incense blends.

The Agilent 7000A Triple Quadrupole GC/MS: How it Works

Figure 3. Multiple reaction monitoring (MRM) technique.

The MRM total ion chromatogram (TIC) for 100 ng/mL of the standard mixture is shown in Figure 4. All 17 of the synthetic cannabinoids chosen for analysis were found. Due to the high selectivity of the GC/MS/MS technique, chemical noise is negligible resulting in a very clean TIC.

Figure 4. MRM total ion chromatogram for 100 ng/mL of the standard mixture. All 17 synthetic cannabinoid standards were easily found.

Calibration curves were then constructed over the range of 100 - 400 ppb by spiking blank extracted matrix with known reference standards. Replicate injections (n = 3) were made at 100 ppb, 200 ppb, and 400 ppb. The calibration curves for all analytes yielded an average correlation coefficient of linearity (r²) of 0.99 with standard deviations of 0.012. The average RSD was 13%, 7%, and 6% at 100 ppb, 200 ppb, and 400 ppb, respectively. Levels of quantification as determined by a signal to noise ratio \geq 10, were determined to range from 1 – 100 ppb in the heavy botanical matrix.

Figure 5 shows the calibration curves for two synthetic cannabinoids with very high activity, JWH-018 and JWH-073 at 100 ng/mL – 400 ng/mL. Typical chromatographic results, for example for JWH-018 at 100 ng/mL, are shown in Figure 6.

Figure 5. Calibration curves for JWH-018 and JWH-073 show the excellent linearity of the method.

Figure 6. Results for JWH-018 at 100 ng/mL. The shaded peak shows the quantifier ion transition (324 to 254 m/z). The trace shows the qualifier ion transition (341 to 167 m/z) is within the criteria (horizontal lines) established for the method.

Demonstrating the wide variability of herbal blend formulations, JWH-073 and JWH-018 were detected in all of the blends at concentrations ranging from 50 to 150 ppb. Notably, K2 Blondie contained JWH-073 and JWH-018 at concentrations extrapolated to be as much as 1,000-fold higher based on area counts alone. All of the blends contained two or more synthetic cannabinoids as confirmed by correct ratio of the qualifying ion to that of the quantifying ion, and the expected retention time.

Conclusion

For the analysis of synthetic cannabinoids in herbal blends, the utility of triple quadrupole MS cannot be overstated. Its ability to negate matrix effects and improve signal-to-noise markedly increase confidence in analytical results. Compared to single quadrupole MS, triple quadrupole MS reduces false negatives and positives, and lowers detection limits, without need for additional post data acquisition processing such as mass spectral deconvolution and review, thereby providing a substantial time savings.

References

- Chemicals Used in "Spice" and "K2" Type Products Now Under Federal Control and Regulation. News Release. Public Affairs, U.S. Drug Enforcement Administration. March 1, 2010. http://www.justice.gov/dea/pubs/pressrel/pr030111.html
- Notice of Intent to Temporarily Control Five Synthetic Cannabinoids. Office of Diversion Control, U.S. Department of Justice, Drug Enforcement Administration, Federal Register Notices, Rules – 2011. http://www.deadiversion.usdoj.gov/fed_regs/ rules/2011/fr0301.htm
- T.J. Gluodenis Jr., Identification of Synthetic Cannabinoids in Herbal Incense Blends. Forensic Magazine. 31-35. June/July 2011.
- 4. Agilent Technologies, Inc. Identification of Synthetic Cannabinoids in Herbal Incense Blends by GC/MS, Application Compendium. P/N 5990-7967EN. April 2011.

Acknowledgement

The authors would like to thank the National Medical Services (NMS) Laboratory (Willow Grove, PA) for graciously providing the herbal blend extracts used in this study. The authors would also like to acknowledge Fran Diamond of NMS for the development of the sample preparation and extraction methodologies.

For More Information

These data represent typical results. For more information on our products and services, visit our Web site at www.agilent.com/chem.

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice. $% \left({{{\boldsymbol{x}}_{i}}} \right)$

© Agilent Technologies, Inc., 2011 Printed in the USA September 14, 2011 5990-8987EN

