

3D CELL EXPLORER

TAKE YOUR CELL Research to the Next Dimension

NON-INVASIVE 3D Characterization

Live cell imaging in physiological conditions without any bleaching or phototoxicity

LABEL-FREE 4D CONTINOUS Observation

Measurement of cell processes from seconds to weeks

MULTIPLEXING

High resolution and high sensitivity characterization of multiple cell organelles based on their refractive index

THE HOLOTOMOGRAPHIC MICROSCOPE

LOOKDEEPER

NON-INVASIVE 3D CHARACTERIZATION OF LIVE CELLS IN PHYSIOLOGICAL CONDITIONS

The 3D Cell Explorer measures the quantitative refractive index of cell organelles in seconds. Hence, it is possible to do non-invasive *in vitro* imaging of almost any kind of cells with up to 30 μ m depth of reconstruction. This allows for biological features to be segmented based on their physical characteristics.

Mouse embryonic stem cells (mESCs) undergoing cell division visualized in 3D

C THE 3D CELL EXPLORER IS ABSOLUTELY FANTASTIC! ITS EASE OF OPERATION, INTUITIVE NATURE, COMPACT SIZE, RAPID IMAGING AND NO NEED FOR STAINS MAKE THIS A SYSTEM I WOULD CERTAINLY RECOMMEND.

Wojtek Chrzanowski, MSc, PhD, DSc Senior Lecturer, Faculty of Pharmacy and the Australian Institute for Nanoscale Science and Technology at the University of Sydney, Australia

LABEL-FREE 4D CONTINUOUS OBSERVATION OF CELL PROCESSES FROM SECONDS TO WEEKS

Study cell life cycle processes of growth, division & death in 3D and 4D. Thanks to a dedicated top-stage incubator you can monitor cell compartments and their kinetics and dynamics in real-time at every second without interfering with their natural physiology.

T685A human melanoma cell undergoing apoptosis

MULTIPLEXING

High resolution and high sensitivity characterization of multiple cell organelles based on their refractive index. Explore and measure up to 8 cell organelles simultaneously with unprecedented detail and resolution, marker-free and preparation-free based on their own physical density.

Mouse fibroblasts and their internal compartments: a. mitochondria; b. plasma membrane; c. actin fibers; d. lipid droplets; e. lysosomes; f. nuclear envelope, nucleus & nucleoli.

DISCOVER More

EXPLORE A NEW VISION

Label-free unstained 3D cells Long observation time New space for discoveries

3D DATA SETS

Multiplexing, unique organelle segmentation Quantitative data analysis

SAVE EXPERIMENTAL TIME

No sample preparation Short setup time Fast & easy acquisition

COMPATIBLE SAMPLE STAGE

Top-stage incubator, pipettors, microfluidic devices, ...

TECHNICAL SPECIFICATIONS

$\Delta x, y = 200 \text{ nm};$ $\Delta z = 400 \text{ nm}$
85 × 85 × 30 µm
0.5 fps 3D image rate with full self-adjustement
Dry objective / 60 × magnification / NA 0.8
Class 1 low power laser (λ =520 nm, sample exposure 0.2 mW/mm ²)
60 mm of free access to the sample stage for sample manipulation

