

GC×GC–TOF MS for petrochemical fingerprinting

Wide-ranging petrochemical applications

CRUDE OIL FINGERPRINTING

OIL SPILL ANALYSIS

MATERIALS CHARACTERISATION

PYROLYSIS OILS &

NOVEL FUELS

AVIATION FUELS

ODOURS FROM PLASTICS

GC×GC–TOF MS for petrochemical fingerprinting

INSIGHT-Flow

INSIGHT-Thermal

BenchTOF2[™] time-of-flight MS

ChromSpace software

- Excellent sensitivity with full range spectra
- Reference-quality spectra
- Mass accuracy (<50ppm)
- Tandem Ionisation for unique soft ionisation
- Fast acquisition speeds (up to 400 Hz)

Wide analyte range

Flow modulation

hermal modulation

Example application: Analysis of aviation fuel

Following ASTM Method D8396

🚽 Area Percent

Flow modulation

-

X

Thermal modulation

- Speciating hydrocarbons in middle distillates by ASTM Method D8396
- Easy reporting in ChromSpace[®]

Enhanced productivity...

...through dual-channel GC×GC–FID

Advantage of adding BenchTOF2

Analysis of diesel by GC×GC–TOF MS/FID

Flow modulation

hermal modulation

The importance of mass accuracy

Be sure you're identifying the correct compound

🖎 C:\Users\laura.mcgregor\OneDrive - Markes International Limited\Documents\APPS\Liquid smoke\HD\Liquid Smokes_210819_Applewood_5_70eV.lsc - 🗗 🗙															
<u> </u>	File	Export	View	Processing	Qual/Quant Spectral To	ools Identity Tools Library									
	s 🖬 🛠	D 🛃 🛃 🖫	💥 🗗 👘 💥 🐜 🔞 🛛	2 🐪 🖾 🕂 2 🌆 🖉 00 日 🗁 🖗	n 🚾 🕺 🛞 💷 🐘 🕍 🕅 🕅	🧃 🖟 🕅 🦛 🕅 🚛 👘			- Mass to f	omula					_
ا 💿	8 🛛	Spectra [RT = 16.7078] 2-Cyclopenten-1-one, 3,4-dimethyl- [Lib:mainlib; Fwd:800; Rev:867]							Disp	av as neutral loss/gain					
R			Mass (m/z) 34.9449 Abundance 32567.957		- 1	Mass to formula		1		ay as near an loss/gain	•		_		
sult		42143.6719	1			Display as neutral loss/gain	Calculate	1	Mass:	110.074 ≑				Calculate	e
Bro					95.050	Mass. T10.074	Dobo Dobo DPM	1		-					
WSe			-		CeH+O	1 C ₂ H ₁₀ O	3 9.4027		ldx	Formula		RDB	Delta PPM		_
1						2 C3H10O4	-1 147.9911		1	C7H10O		3	9.4027		
									2	C-H-O-		-1	147 9911		
		34400	-						2	031 11004		•	147.3311		_
						Element settings: Basic	✓ Edit	i l							
						Isotope pattern									
			1		110.074	Formula: C7H10O									
					C7H10O	Pattern fit: 0.976									
		I				Mass Abundance	Unknown f(x)		Element	settings: Basic			~	Edit	
		25800	1	67.054 C.H.		110.073 100 111.077 7.72412	100								
		uts)				112.079 0.462852	1.21897		Isotope p	attem					
		00				113.081 0.020607	0		Formula:	C7H10O					
		dance				114.084 0.000577663	0	1			0.070				
		Abuno				Parametric Expression			Pattern fi	t:	0.976				
		17200	-			Mass tolerance 0.100 \$			Mass	4	Abundance	Unknown		f(x)	
							Generate	1	110.07	,		100		14/	
									110.073	3	00	100			
			-						111.077	7 7.	.72412	10.2532			
									112.079) 0.	.462852	1.21897			
		8600	4 1.1						113.081	0.	.020607	0			
									114.084	ι O.	.000577663	0			~
									Parametri	c Expression					
									Tolerand	= %	20 🔺				
									rolerand	C /o	20 -				
		30	.7136 40 50		0 100 110 119.4886				Mass tol	erance	0.100 🜩				
		Scanset	6	Mass (m/z)										Contract	1.
		J			,									Genera	te
	File	Headers					Č)							

Making the most of mass spectral data

Flow modulation

Making the most of mass spectral data

Classification of diesel by GC×GC–TOF MS

Simple set-up of parallel detection

Classification of sulfur species using GC×GC–SCD/FID

Flow modulation

Thermal modulation

 Sulfur species often elute in overlapping bands with other aromatic hydrocarbons making it challenging to perform quantitation via FID

Classification of sulfur species using GC×GC–SCD/FID

Flow modulation

hermal modulation

Example application: Crude oil fingerprinting

Flow modulation

Thermal modulation

• We can help to optimise your method and make the most of the separation space

SepSolve Analytical

Example application: Analysis of pyrolysis oils

Flow modulation

Thermal modulation

Samples kindly supplied by Dr Miloš Auersvald (University of Chemistry and Technology Prague, Czech Republic)

Example application: Analysis of pyrolysis oils

Example application: Analysis of pyrolysis oils

Separation of n-paraffins, mono-olefins and di-olefins

What about potential migrants?

Analysis of packaged beverages

'Aged' Exposed to heat & direct sunlight for 8 weeks **'Fresh'** Refrigerated for 8 weeks 25% recycled/75% virgin PET bottle containing a popular soft drink

Impact of packaging on beverages

Impact of packaging on beverages

SepSolve Analytical

Total Petroleum Hydrocarbons (TPH)

- Commonly split into:
 - Volatile Petroleum Hydrocarbons (VPH) ~C₅-C₁₀
 - Extractable Petroleum Hydrocarbons (EPH) ~C₈-C₄₀₊
- For environmental fate and risk-based analysis the aliphatic and aromatic hydrocarbons <u>must</u> be separated

Compounds are reported as groups (>C₈-C₁₀, >C₁₀-C₁₄...etc) rather than individually

A new approach to EPH...

...using GC×GC–FID

 Chromatographic separation of aliphatic and aromatic hydrocarbons in a single run, reducing processing time

Simple data processing...

...using stencils

- Regions of interest (Aliphatic > C_{10} - C_{12}etc) are identified using a banding standard
- Internal standard and surrogate regions can also be added

Enhanced method robustness...

...via metal analytical columns

- Robust metal design provides extended lifetime
- Typically, 3500 4000 analytical runs before replacement

The TPH product package

What's available?

- INSIGHT-Flow modulator
 - And optional second GC×GC channel
- ChromSpace GC×GC software
 - Full instrument control and data processing
- Method statements
- Column sets
 - EPH analysis
 - VPH analysis
- Standards
 - Required to build stencils and calibrations

Summary

- GC×GC–TOF MS provides detailed sample characterisation for even the most complex petrochemicals
- Flexible GC×GC–TOF MS configurations:
 - Robust and repeatable INSIGHT-Flow reverse fill/flush flow modulator
 - Cryogen-free INSIGHT-Thermal with unbeatable productivity and performance
- Unattended analysis within easy-to-manage sequences
- BenchTOF2 provides confident identifications, with excellent spectral quality and powerful mass accuracy (<50 ppm)
- Automated processing workflows with fast and efficient grouptype analysis using customisable stencils in ChromSpace.
- Flexible method development and full applications support

