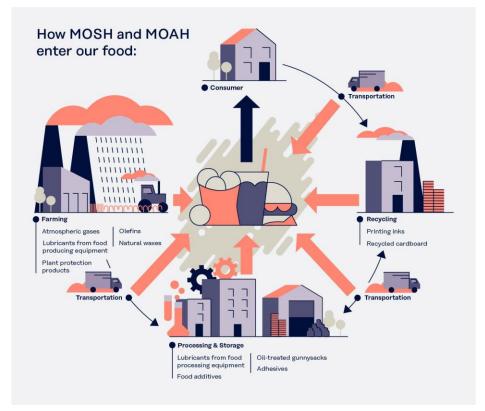
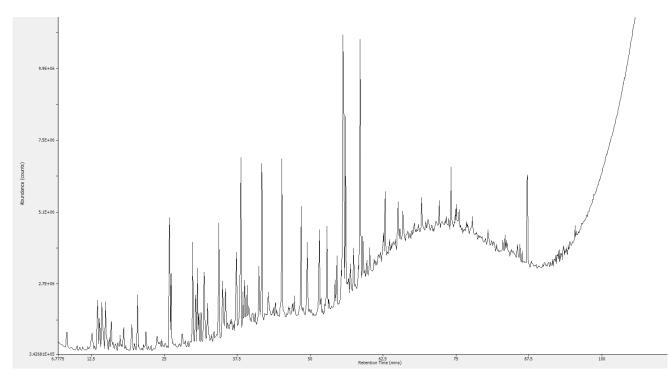
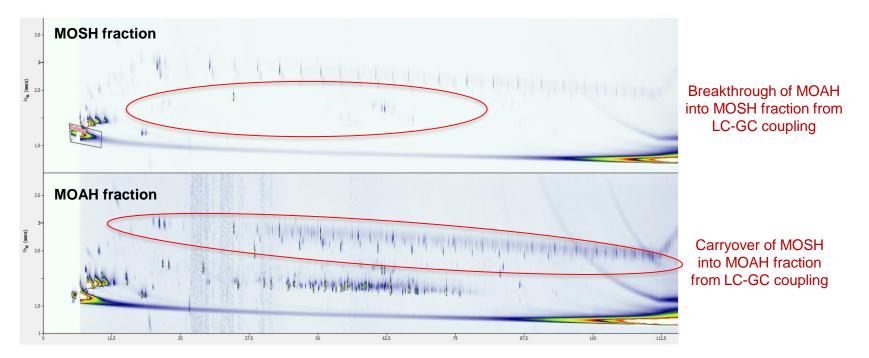

Robust quantitation of MOSH/MOAH contamination in palm oil by GC×GC–FID and TOF-MS


What is MOSH / MOAH?

Mineral Oil Saturated Hydrocarbons

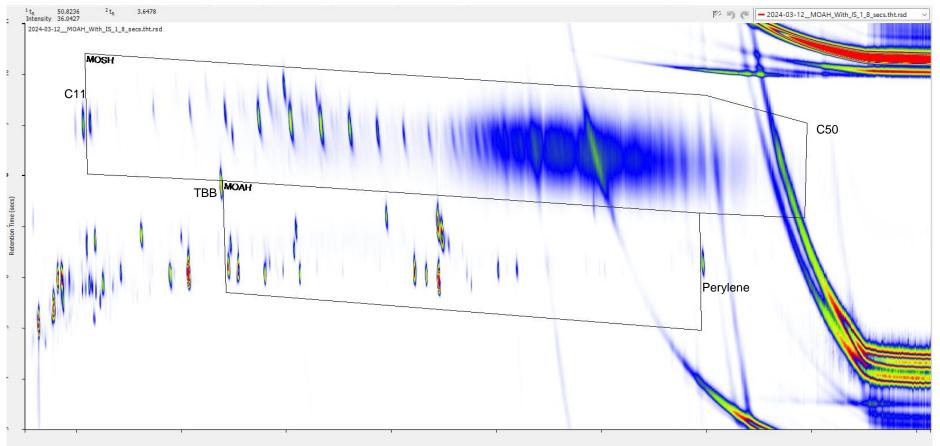

• Mineral Oil Aromatic Hydrocarbons


Challenges in MOSH/MOAH analysis

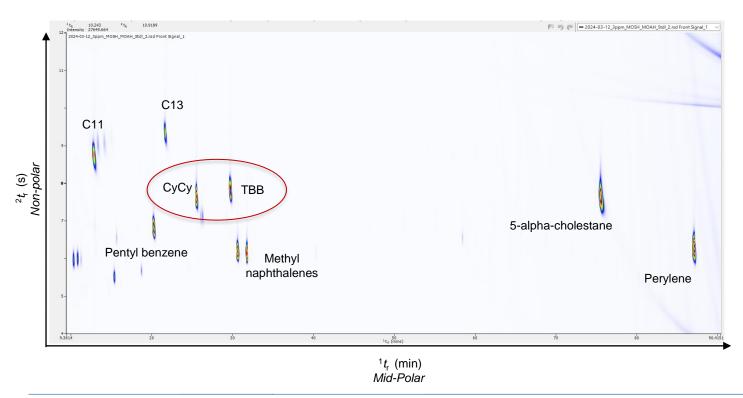
Sample complexity can result in quantitative errors despite LC fractionation when using 1D GC

Challenges in MOSH/MOAH analysis

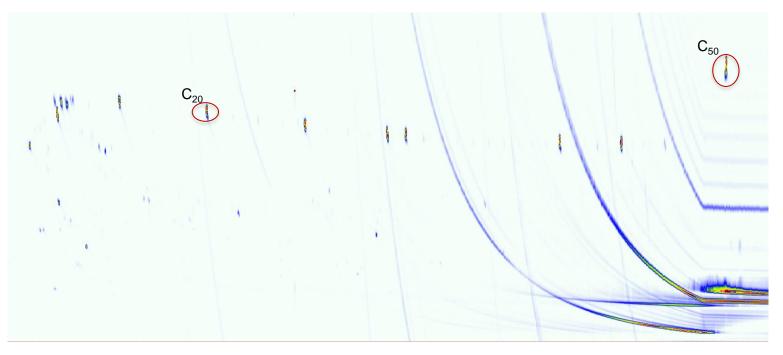
 GC×GC reveals the carryover of aromatics/aliphatics that can occur during fractionation, which results in quantitative errors when using 1D GC


Experimental

- Sampling and injection: Neat injections (2 µL) of analytical standards and MOSH/MOAH fractions using a split/splitless inlet. 750µg/µL internal standards of bicyclohexyl (CyCy) and TBB added for single point calibration of MOSH and MOAH respectively.
- GC×GC: INSIGHT[®]-Thermal modulator; Modulation period (P_M) = 8 s
- **Detection:** Flame ionization detector (FID)
- Software: Full instrument control and data analysis using ChromSpace[®]


Internal Standard Markers for Stencil Placement

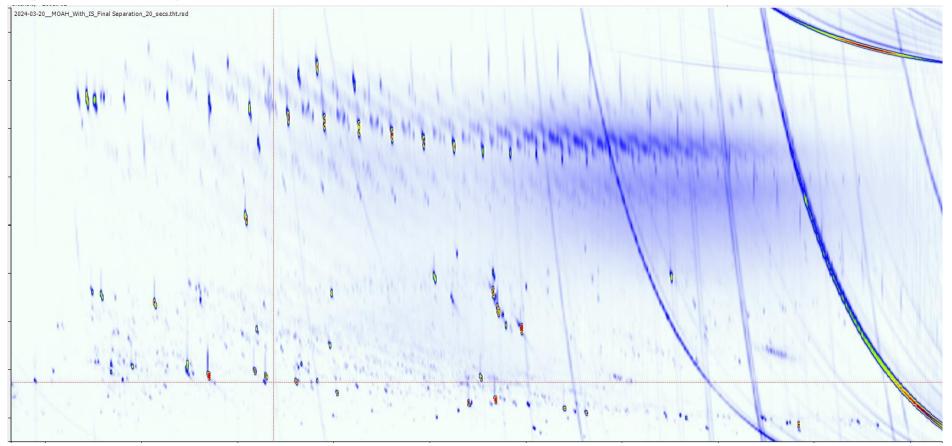
System suitability


MOSH/MOAH internal standard mix

System suitability

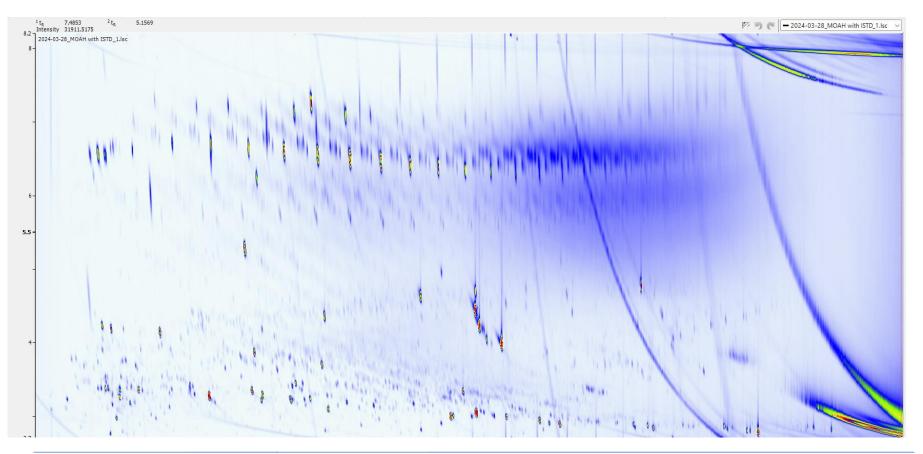
Analysis of C_{10} to C_{50} alkane standard

% Recovery of C₂₀ compared to C₅₀ was 107%

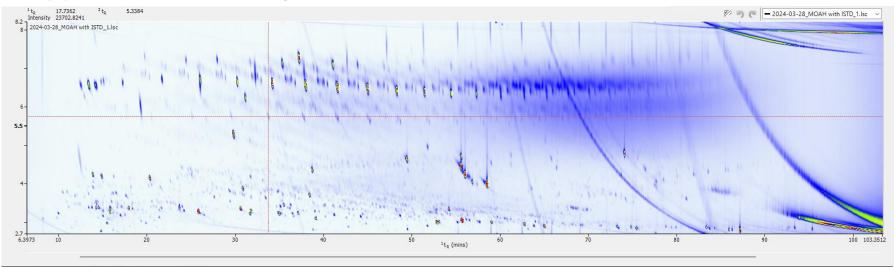

Spiked alkane and PAH mix

Fraction	Spiked amount (µg/mL)	Calculated amount (µg/mL)
MOSH – Using CyCy	145	137
MOAH – Using TBB	60	60
MOSH 1:10 Dilution – Using CyCy	14.5	14.18
MOAH 1:10 Dilution – Using TBB	6	5.16

Close alignment of the spiked and calculated amounts



Optimised separation run via FID



MOSH/MOAH fractions via TOF-MS

<50ppm Mass Accuracy to assist with class identification

[RT = 33.8288] n-Nonylcyclohexane [Lib:mainlib; Fwd:909; Rev:909]		\odot
INDEX RT = 33.8288] n-Nonylcyclohexane [Lib:mainlib; Fwd:909; Rev:909] Mass (m/2) 206.9877 Abundance 527.7516 100 2024-03-28_MOAH with ISTD_LISC 83.083 80 82.077 60 55.058 40 55.058	Mass to formula Display as neutral loss/gain Mass: 210.228 Idx Formula RDB Deita MMU CvsHae 1 - 6.95 Element settings: Basic	Calculate
20- 43,056 55,074 42,056 55,074 42,056 55,074 42,057 4	Isotope pattern Formula: C+sHao 280,958 Pattern fit: 0.966	

- MOAH limits of <2ppm may be introduced for palm oil, making robust analysis even more important
- GC×GC reveals the carryover of aromatics/aliphatics that can occur during fractionation, for improved quantitative precision
- INSIGHT-Thermal modulator provides sharp peaks across a wide volatility range (C₅₀₊) for high sensitivity and excellent peak capacity
- Work is on-going to optimise the separation and develop a step-bystep analysis protocol

