

Marketa Wayhelova^{1,2}, Jan Oppelt^{3,4}, Denisa Vesela², Jan Smetana^{1,2}, Filip Pardy⁵, Hana Filkova¹, Dita Matuchova¹, Jana Soukalova¹, Renata Gaillyova¹, Petr Kuglik^{1,2}

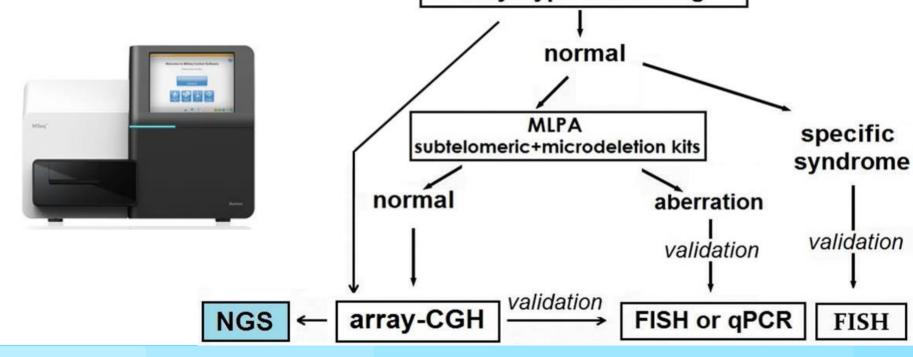
¹University Hospital, Department of Medical Genetics, Brno, Czech Republic, ²Faculty of Science, Department of Experimental Biology, Brno, Czech Republic; ³National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic, ⁴CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic, ⁵Core Facility Genomics, CEITEC, Masaryk University, Brno, Czech Republic

INTRODUCTION

Although array comparative genomic hybridization (aCGH) is a powerful tool for detecting relative small genomic in patients with intellectual disability (ID), autism spectrum disorders and multiple congenital anomalies (MCA), next-generation sequencing (NGS) techniques have become a powerful tool for the identification of pathogenic sequence variants. Here, we present our first experience with targeted NGS as a novel step in the diagnostic algorithm for patients with ID/MCA. In our pilot NGS project, we investigated 16 patients with using a commercially available 2742-gene panel. We illustrate the impact of targeted NGS approach on a case of 9-year-old boy with severe ID/MCA related to early-onset myoclonic encephalopathy.

PATIENTS AND METHODS

Fig. 1: Novel diagnostic algorithm for patients with ID/DD


karyotype G-banding

DNA from peripheral blood cells of 395 children with severe ID/DD/MCA, autism spectrum disorders

 Array-CGH: SureTag Labelling Kit: Cy3/Cy5 + SurePrint 4X180K CGH Microarray (Agilent Technologies)

detection filters: 5 probes, 100kb, log₂ ratio 0.25 (Agilent Genomic Workbench + Cytogenomics) 2) FISH: FISH probe RP11-866E20 (Texas Red) (EmpireGenomics)

- 3) Relative qPCR: Power SYBR[®]Green (ThermoFisher) + custom DNA primers (IDT)
- 4) NGS: SureSelect Inherited Disease design (Agilent Tech.), MiSeq benchtop sequencer (Illumina)

RESULTS

In the course of our ten-year experience with array-CGH analysis (2007-2016) using 4X44K and 4X180K CGH & CGH+SNP microarrays we investigated 395 children's patients with ID/DD/MCA. We detected 76 pathogenic/likely pathogenic CNVs which results in the diagnostic yield of 19.2% (76/395) (Fig. 1). In 2015/2016 in our pilot NGS project, we investigated 16 patients with severe ID/DD/MCA using a commercially available 2742-gene panel SureSelect Inherited Disease (Agilent Technologies) and detected pathogenic or likely pathogenic sequence variants in 31.25% patients (5/16) (Fig. 2). Here we report on a 9-year-old boy (ID 2486/15) with severe ID/DD related to early-onset myoclonic encephalopathy. He was examined a normal male karyotype 46,XY. Using 180K CGH array we detected 18q21.32 539-kb copy-number gain classified as likely benign. We estimated its *de novo* origin by relative qPCR and R-values calculation. FISH analysis using a custom probe excluded the dispersed 18q21.32 duplication. Targeted NGS analysis identified pathogenic SCN2A gene variant g.166166923C>T (p.Ala263Val). De novo origin was confirmed by Sanger sequencing analysis of parental DNA samples.

Clinical significance of detected CN	IVs or UPD/LOH	patient ID	gender year of birth	gene	variant (protein level)	phenotype
(2007-2016) 57% 16% 4%	4%	1109/13	Male, *2004	MED13L	p.GIn473fs	Moderate ID, absence of speech, hearing impairment, facial stigmatization, syndactyly
	 pathogenic/likely pathogenic VOUS 	935/15	female, *2013	ASXL3	p.Arg1004fs	Severe ID, growth retardation, facial stigmatization
	 likely benign 	1173/16	Female, *2016	TSEN54	p.Arg54Gly p.Ala307Ser	Microbrachycephaly, severe multiple dysplasia of CNS, muscle hypertonia
	not assessed	1176/16	Female, *2014	SCN2A	p.Met1545Val	Severe ID, early-onset myoclonic encephalopathy, axial hypotonia, limb spasticity, facial stigmatization
4 /0	negative result	2486/15	Male, *2007	SCN2A	p.Ala263Val	Severe ID, early-onset myoclonic encephalopathy
ig. 1: Clinical significance of de IPD/LOH between the years 2007-201		-	-			DNA sequence variants detected in 31.25% using targeted NGS.
chr2 ▼ chr2:166,166,893-166,166,953 Go 音 ◄ ▷ 🐲	■ × 🖵 I		1		A_G	<u>C G T G T T G C G C T A A T A G G A T I</u>
166 166 900 bp 1 1 1 1 151]	62 bp	166 166 930 Бр I	166 166 940 Бр I I			C G T G T T T G C G C T A A T A G G A T T
						CGTGTTTGCGCTAATAGGATT
				<u> </u>		Λ
					(M	MUMMMMMM
C T T G A C T G T G T T C T G T C T A A G	C G T G T T T G C G C T	A A T A G G A 1	T G C A G T T G T	T C A T G G	(p.Ala2	The SCN2A gene variant g.166166923C>T 63Val) validation and origin analysis by d Sanger sequencing.

The substitution was detected in 45% reads (55/145). SCN2A gene encodes one of sodium-channel alpha subunits expressed in CNS. In the literature, p.Ala263Val in SCN2A gene is described as a pathogenic variant in children with early-infantile epileptic encephalopathy 11/Ohtahara syndrome.

We identified *de novo* origin and heterozygosity of p.Ala263Val variant in our patient.

Chromatograms: patient – father - mother

Conclusions

In our pilot study and presented case, we show our first experience with NGS as a novel step in molecular diagnostic algorithm. We confirm the effectivity of combination of array-CGH and targeted NGS as robust and sensitive genomic techniques with a diagnostic yield of 19.2% (array-CGH) and 31.25% (targeted NGS). Based on our experience and worldwide studies, our novel diagnostic algorithm including targeted gene-panel NGS could lead to higher diagnostic yield in patients with heterogeneous genetic conditions.

This study was supported by Ministry of Health, Czech Republic – conceptual development of research organization (FNBr, 65269705). We declare no conflicts of interest. contact: marketa.way@gmail.com