Mitochondrial respiration measurements using intact cells can help define metabolism and its dysregulation in fields such as cancer, metabolic disease, immunology, and neurodegeneration. Using intact cells in combination with the Seahorse XF Cell Mito Stress Test provides a general mitochondrial bioenergetic profile. Changes in respiration may correlate to altered mitochondrial substrate oxidation. Therefore, examining the effect of specific substrates is one approach to determine the mechanism underlying the observed differences.

Many oxidizable substrates are unable to cross the plasma membrane freely, preventing control over which substrates the mitochondria are oxidizing. Moreover, while the assay medium can be supplemented with various substrates, many cell types can store and oxidize endogenous pools of substrates (e.g. glycogen and triglyceride), making it difficult to determine precisely which metabolic pathways are fueling respiration.

Consequently, pinpointing the precise mechanism underlying metabolic changes has typically involved isolating mitochondria. While mitochondrial respiration measurements in isolated mitochondria enable control over which substrates are oxidized, the process is complex, and the yield and quality of the end product is often poor and prone to sub-selection during isolation.

XF Plasma Membrane Permeabilizer (XF PMP) provides a solution to this challenge, allowing experimental control over the specific substrates offered to \textit{in situ} mitochondria. A combination of XF PMP, substrates, and inhibitors yields a powerful approach to understanding mitochondrial function.

XF PMP forms pores in the plasma membranes of adherent cell monolayers with demonstrably less mitochondrial outer membrane damage and cell lifting than detergent-based options such as digitonin or saponin1,2. Moreover, a fixed concentration of XF PMP sufficiently permeabilizes a broad range of cell types1, reducing the time spent optimizing assay conditions.

By exploiting the fact that substrates feed differentially into mitochondrial pathways1,3, it is possible to isolate which metabolic pathways are responsible for the altered oxygen consumption rate (OCR) originally observed in intact cells (Figure 2).

This Technical Brief describes utilizing XF PMP-treated cells and the Seahorse XF\textsuperscript*} 96/24 or XF 96/24 Analyzer to measure substrate oxidation in relation to specific respiratory complexes. This document also provides a table of common substrates, inhibitors, and assay designs that measure respiratory complex activity.
Using XF Plasma Membrane Permeabilizer (PMP) to Measure Substrate Oxidation by Mitochondrial Respiratory Complexes Without Isolating Mitochondria

Materials and Methods

The assay workflow (Figure 1) describes the procedure used to prepare the cells and the XF PMP reagent. For detailed materials and methods, refer to the Protocol: ‘Conducting an assay using cells treated with XF-PMP’. The experiments described in this Technical Brief used a Seahorse XF96 Extracellular Flux Analyzer. These methods can be adapted for all Seahorse XF 96/24 and XF 96/24 Analyzers.

Table 1 | Substrates and Inhibitors

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Final Conc.</th>
<th>Add with…</th>
<th>Relevant Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyruvate</td>
<td>10 mM</td>
<td>1 mM malate, 2 mM DCA*</td>
<td>2 μM rotenone, 2 μM UK5099</td>
</tr>
<tr>
<td>Glutamate</td>
<td>10mM</td>
<td>10 mM malate</td>
<td>2 μM rotenone, 2 μM antimycin A</td>
</tr>
<tr>
<td>β-hydroxybutyrate</td>
<td>10 mM</td>
<td>1 mM malate</td>
<td>2 μM rotenone</td>
</tr>
<tr>
<td>Palmitoylcarnitine/</td>
<td>40 μM</td>
<td>1 mM malate</td>
<td>2 μM antimycin A</td>
</tr>
<tr>
<td>Octanoylcarnitine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-ketoglutarate</td>
<td>10 mM</td>
<td>No additions necessary</td>
<td>2 μM rotenone</td>
</tr>
<tr>
<td>Succinate</td>
<td>10 mM</td>
<td>2 μM rotenone</td>
<td>2 μM antimycin A, 2 μM myxothiazol, 20 mM malonate</td>
</tr>
<tr>
<td>Glycerol-3-phosphate</td>
<td>5–10 mM</td>
<td>2 μM rotenone</td>
<td>2 μM antimycin A, 2 μM myxothiazol</td>
</tr>
<tr>
<td>Ascorbate</td>
<td>10 mM</td>
<td>100 μM TMPD, 2 μM antimycin A</td>
<td>20 mM azide</td>
</tr>
</tbody>
</table>

NADH-linked (Complex I) substrates
Q-linked (Complex II or III) substrates
Cytochrome oxidase-linked (Complex IV) substrates

*Optional: DCA will relieve potential kinase inhibition of pyruvate dehydrogenase
Adapted from Divakaruni et al., 2014 [4].

Cell Culture

All indicated cell lines were cultured as specified by the manufacturer. Twenty-four hours prior to the assay, the cells were counted and seeded at a pre-determined optimal density in an XF96 Cell Culture Microplate (Seahorse Bioscience Catalog # 101085-004).

Reagent Preparation

All substrates and inhibitors used in this XF assay (Table 1) were freshly prepared, as indicated in the Protocol: ‘Conducting an assay using cells treated with XF-PMP’. XF PMP reagent (Seahorse Bioscience Catalog # 102504-100) was used as according to the manufacturer’s instructions.

Data Analysis

All data analysis employed Wave. Data shown are mean ± SEM.

Interpretation of Results

Cells pre-treated with XF PMP examine mitochondrial substrate oxidation by measuring OCR changes.

COMPLEX I – Measuring the oxidation of NADH-linked substrates (such as pyruvate or glutamate) in permeabilized cells alongside succinate characterizes defects in complex I activity (Figure 3 and 4). For example, permeabilized cells treated with fenofibrate, a complex I inhibitor at supraphysiological concentrations, exhibited a depressed respiration rate for NADH-linked substrates but no effect on succinate-driven respiration (Figures 3 and 4).
USING XF PLASMA MEMBRANE PERMEABILIZER (PMP) TO MEASURE SUBSTRATE OXIDATION BY MITOCHONDRIAL RESPIRATORY COMPLEXES WITHOUT ISOLATING MITOCHONDRIA

COMPLEXES II and III – Using FADH$_2$-linked substrates (such as succinate or glycerol-3-phosphate) in addition to measurements of ascorbate-driven respiration reveals defects in respiratory complexes II and III (Figure 5). The complex III inhibitor myxothiazol blocks succinate-driven respiration but does not affect complex IV activity, as demonstrated by respiration driven by TMPD with ascorbate.

Careful selection of substrates and inhibitors can distinguish between effects at either complex II or III. For example, the complex II inhibitor malonate depresses the rate of succinate-driven respiration, but has no effect on complex IV activity and a minimal effect on glutamate-driven respiration.

Since glutamate oxidation requires a functional Q-cycle, a bona fide complex III inhibitor such as myxothiazol collapses the rate of glutamate-driven respiration, giving a different profile than malonate. Measurement of another Q-cycle-linked substrate, such as glycerol-3-phosphate, provides a definitive measurement and a distinction between complex II and III.

COMPLEX IV – Measuring respiration in the presence of TMPD with ascorbate assesses cytochrome oxidase activity (Figure 6). The results are verified by measuring sensitivity to the complex IV inhibitor azide.

COMPLEX V (ATP SYNTHASE) – By measuring phosphorylating and uncoupler-stimulated respiration, the Seahorse XF Analyzer probes the activity of the enzymes involved in ATP synthesis (Figure 7). Decreased activity of ATP synthase presents as a decrease in phosphorylating respiration without a concomitant drop in maximal, uncoupler-stimulated respiration. Note: This profile is independent of the substrate offered. Patient fibroblasts with defects in the adenine nucleotide translocase (as illustrated in Figure 3), the phosphate carrier, or the ATP synthase [see Ref. 5 as an example] would exhibit qualitatively similar results.

Summary
The ability to identify, as well as, quantify changes in specific components of mitochondrial respiration provides mechanistic insight into the complex relationship between mitochondrial function and cellular phenotype. Studying these changes is critical to understanding disease etiology, pathology, and potential therapeutic mechanism of action.

By forming pores in the cellular plasma membrane and allowing the user to study the oxidation of specific substrates, XF PMP provides a powerful and precise approach to studying mitochondrial function. This type of controlled experimental design can isolate the mechanism associated with an observed metabolic change.

In this Technical Brief, we describe methods that utilize XF PMP-treated cells to examine in situ mitochondrial substrate oxidation. Using a combination of specific substrates, inhibitors, and mitochondrial effectors, the function of each respiratory complex can be studied (Figure 2). Conducting substrate oxidation analysis using permeabilized cells overcomes the disadvantages associated with isolated mitochondria from cells, including poor quality and yield as well as sub-selection during the isolation procedure. Moreover, unlike detergent-based permeabilization methods, such as digitonin or saponin, XF PMP is considerably less prone to cell lifting or mitochondrial outer membrane damage.
While the method outlined in this Technical Brief focuses on specific respiratory chain complexes, a different approach can use XF PMP to determine a general overview of respiratory chain activity when sample size is limited. Refer to the ‘Using XF PMP to measure maximal respiration in limited biomaterial without isolating mitochondria’ Tech Brief (www.seahorsebio.com) for an alternative method to investigate mitochondrial substrate oxidation. Seahorse XF technology combined with XF PMP is a powerful tool that enables further mechanistic analysis of cellular metabolism.

Assay Optimization Hints:
1. Table 1 lists the starting concentration for oxidizable substrates and inhibitors used in the assay. Cells may have specific substrate preferences based on the tissue origin and culture conditions.
2. Assay duration should be as short as possible to avoid cell lifting from the microplate.
3. Perform the wash steps as quickly (but gently) as possible to minimize the cell-exposure time to the MAS buffer.
4. When pipetting BSA-supplemented assay medium, bubbles can form in the assay plate. Therefore, do not push past the stopper when either washing or loading the plate.

References

For Research Use Only. Not for use in diagnostic procedures.

© Agilent Technologies, Inc., 2016
Published in the USA, August 1, 2016
5991-7151EN