Illuminator Chemiluminescent Detection System

INSTRUCTION MANUAL

Catalog #300360 (Illuminator Chemiluminescent Detection System), and #300362 (Illuminator Chemiluminescent Detection System with Prime-It Fluor Fluorescence Labeling Kit)

Revision A.01

For In Vitro Use Only

300360-12
LIMITED PRODUCT WARRANTY

This warranty limits our liability to replacement of this product. No other warranties of any kind, express or implied, including without limitation, implied warranties of merchantability or fitness for a particular purpose, are provided by Agilent. Agilent shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product.

ORDERING INFORMATION AND TECHNICAL SERVICES

United States and Canada

Agilent Technologies
Stratagene Products Division
11011 North Torrey Pines Road
La Jolla, CA 92037

Telephone (858) 373-6300
Order Toll Free (800) 424-5444
Technical Services (800) 894-1304
Internet techservices@agilent.com
World Wide Web www.stratagene.com

Europe

<table>
<thead>
<tr>
<th>Location</th>
<th>Telephone</th>
<th>Fax</th>
<th>Technical Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>0800 292 499</td>
<td>0800 292 496</td>
<td>0800 292 498</td>
</tr>
<tr>
<td>Belgium</td>
<td>00800 7000 7000</td>
<td>00800 7001 7001</td>
<td>00800 7400 7400</td>
</tr>
<tr>
<td></td>
<td>0800 15775</td>
<td>0800 15740</td>
<td>0800 15720</td>
</tr>
<tr>
<td>France</td>
<td>00800 7000 7000</td>
<td>00800 7001 7001</td>
<td>00800 7400 7400</td>
</tr>
<tr>
<td></td>
<td>0800 919 288</td>
<td>0800 919 287</td>
<td>0800 919 289</td>
</tr>
<tr>
<td>Germany</td>
<td>00800 7000 7000</td>
<td>00800 7001 7001</td>
<td>00800 7400 7400</td>
</tr>
<tr>
<td></td>
<td>0800 182 8232</td>
<td>0800 182 8231</td>
<td>0800 182 8234</td>
</tr>
<tr>
<td>Netherlands</td>
<td>00800 7000 7000</td>
<td>00800 7001 7001</td>
<td>00800 7400 7400</td>
</tr>
<tr>
<td></td>
<td>0800 023 0446</td>
<td>+31 (0)20 312 5700</td>
<td>00800 023 0448</td>
</tr>
<tr>
<td>Switzerland</td>
<td>00800 7000 7000</td>
<td>00800 7001 7001</td>
<td>00800 7400 7400</td>
</tr>
<tr>
<td></td>
<td>0800 563 080</td>
<td>0800 563 082</td>
<td>0800 563 081</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>00800 7000 7000</td>
<td>00800 7001 7001</td>
<td>00800 7400 7400</td>
</tr>
<tr>
<td></td>
<td>0800 917 3282</td>
<td>0800 917 3283</td>
<td>0800 917 3281</td>
</tr>
</tbody>
</table>

All Other Countries

Please contact your local distributor. A complete list of distributors is available at www.stratagene.com.
Illuminator Chemiluminescent Detection System

MATERIALS PROVIDED

<table>
<thead>
<tr>
<th>Materials provided*</th>
<th>Quantity</th>
<th>Storage temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antifluorescein-antibody-AP conjugate</td>
<td>30 rxns</td>
<td>+4°C</td>
</tr>
<tr>
<td>CSPD® chemiluminescent substrate</td>
<td>1.2 ml</td>
<td>+4°C</td>
</tr>
<tr>
<td>Diethanolamine</td>
<td>30 ml</td>
<td>Room temperature</td>
</tr>
<tr>
<td>Southern block reagent (20% BSA)</td>
<td>30 ml</td>
<td>–20°C</td>
</tr>
<tr>
<td>Tween® 20</td>
<td>12 ml</td>
<td>Room temperature</td>
</tr>
<tr>
<td>Northern block reagent</td>
<td>7.5 ml</td>
<td>Room temperature</td>
</tr>
</tbody>
</table>

* The Illuminator chemiluminescent detection system contains enough reagents for processing 30 150-cm² membranes.

LONG-TERM STORAGE CONDITIONS

- Southern Block Reagent: –20°C
- CSPD®: +4°C
- Antifluorescein-antibody-AP conjugate: +4°C
- Diethanolamine (DEA): Room Temperature
- Tween® 20: Room Temperature
- Northern Block Reagent: Room Temperature

PRECAUTIONS

- Diethanolamine is corrosive to skin and to mucous membranes
- Northern block reagent causes eye burns and may cause respiratory tract irritation
- Southern block reagent contains 0.01% sodium azide as a bacteriostat

ADDITIONAL MATERIALS REQUIRED

- 10× SSC
- 20% SDS
- 1 M MgCl₂
- 1 M Tris-HCl (pH 8.0)
- 5 M NaCl
- Water bath or hybridization oven
- Plastic wrap or heat-sealable bag
- Pyrex® or plastic dishes
- Nylon membranes
- Sonicated salmon sperm DNA
- Hybridization solution
INTRODUCTION

The Stratagene Illuminator chemiluminescent detection system, a chemiluminescence-based nucleic acid detection kit, permits fast, safe, and sensitive detection of DNA and RNA immobilized on nylon membranes. As little as 0.2 pg of target plasmid DNA can be detected in a 30-minute exposure of the processed blot to X-ray film or, in a similar exposure time, 1 pg of a single-copy gene can be detected in less than 5.0 μg of genomic DNA. The versatile Illuminator chemiluminescent detection system can also be used for rapid northern blot analysis of RNA. The Illuminator system is designed to be used in conjunction with the Prime-It® Fluor fluorescence labeling system, which incorporates fluoresceinated nucleotides into the probe fragments. After hybridization to nucleic acid immobilized on membrane, the fluoresceinated probe is detected with the reagents of the Illuminator system, which include an antifluorescein antibody conjugated to alkaline phosphatase and a dioxetane substrate for the enzyme. Upon cleavage by alkaline phosphatase, the substrate generates a chemiluminescent signal which can be captured on X-ray film. This nonisotopic nucleic acid detection method offers increased safety, alleviates radioactive waste disposal problems and shortens overall experimental time.

PROTOCOL

Probe Generation

Probe generation should be performed according to the Protocol described in the instruction manual for the the Stratagene Prime-It Fluor Fluorescence Labeling Kit (Catalog #300380). Labeled probe DNA should be purified from unincorporated nucleotides by ethanol precipitation or by using a NucTrap probe purification push-column. Failure to remove unincorporated nucleotides leads to increased background.

For a protocol for monitoring incorporation of fluorescent nucleotide into probe, see Appendix II.

Probe Hybridization and Detection

Southern Blot Protocol

See Appendix I: Target Nucleic Acid Transfer to Membrane for suggested gel electrophoresis and treatment conditions.

Note

Nylon membranes must be used for the following procedure.

The following volumes of buffers and solutions have been optimized for a membrane that is 150 cm². If necessary, adjust the volumes at each step according to the size of your blot. Use a minimum of 2 ml of QuikHyb® hybridization solution for smaller-size blots.

Once the protocol has been started, do not allow the membrane to dry out.
1. After transfer and crosslinking, briefly rinse the membrane in dH₂O.

2. Add 10 ml of QuikHyb hybridization solution and prehybridize for 15 minutes at 68°C. (Standard overnight hybridization solutions and protocols may also be used.)

3. Place the fluoresceinated probe in a microfuge tube containing 100 μl of sonicated salmon sperm DNA (10 mg/ml) stock.

 Note The probe should be generated with the Prime-It Fluor fluorescence labeling kit using ~10 ng starting template per ml of hybridization solution.

 Heat probe in a boiling water bath for 5 minutes. Pulse-spin to collect condensation and store on ice until ready to add to hybridization.

4. Add probe to prehybridization solution and hybridize, with shaking, at 68°C for 2 hours.

5. Wash once for 15 minutes at room temperature in 0.1× SSC/0.1% SDS (150 to 200 ml).

 Wash twice for 15 minutes at 60°C in 0.1× SSC/0.1% SDS (150 to 200 ml) for each wash.

 Note This is a high-stringency wash. Lower stringency can be achieved by decreasing the temperature of the wash solution and/or increasing the concentration of SSC.

6. Prepare 1 liter of TBS† as follows:

 - 50 ml 1 M Tris-HCl (pH 8.0)
 - 30 ml 5 M NaCl
 - 920 ml dH₂O

7. Prepare the blocking solution: mix 1 ml of stock Southern block reagent with 9 ml of TBS.

8. Rinse membrane in a large volume of TBS (~ 150 ml) to remove SDS.

9. Block for 30 minutes at 60°C, while rocking gently. (Blocking can be performed at room temperature, but background may be slightly higher.)

† See *Preparation of Media and Reagents*.
10. Prepare 800 ml of TBST (0.05% Tween® 20 in TBS) by adding 400 µl of Tween 20 to 800 ml of TBS. Briefly rinse the membrane twice in a large volume of TBST (~150 ml per wash). Dilute the antifluorescein-antibody-AP conjugate according to the dilution on the tube label in 10 ml of TBST.

11. Decant the TBST and add the 10 ml of diluted antibody. Incubate for 1 hour at room temperature with gentle rocking.

12. Wash membrane in TBST three times for 10–15 minutes each, at room temperature, with gentle rocking (~150 ml/wash step). Prepare the assay buffer as follows:
 - Dilute 960 µl of diethanolamine (DEA) in 95 ml of dH₂O
 - Add 100 µl of 1 M MgCl₂
 - Bring final volume to 100 ml with dH₂O and mix well

13. Decant TBST. Equilibrate membrane in the assay buffer, rocking for 5 minutes at room temperature.

15. Decant the assay buffer and add the substrate buffer. Rock gently for 10 minutes at room temperature.

16. Seal membrane in plastic wrap or a heat-sealable bag. When using a heat-sealable bag, cut open two of the three closed edges, open the bag on a flat surface and place the blot inside. Close the bag and remove excess substrate buffer by rolling a pipet over the bag in order to squeeze the buffer out of the edges onto absorbent paper.

 When using plastic wrap, place the blot on top of a sheet of plastic wrap and fold the sheet over to cover the blot. Remove excess substrate buffer by rolling a pipet over the plastic wrap or pressing gently with paper towels in order to squeeze the buffer out of the edges onto absorbent paper.

 Do not allow the membrane to dry out completely. Seal the edges of the bag or fold over the edges of the plastic wrap and expose to X-ray film (e.g., Kodak® X-OMAT® AR) for ~30 minutes at room temperature.

16. The membrane may be re-exposed for longer or shorter periods of time as necessary. Exposures may also be obtained the following day; the signal will be more intense, but the background may be slightly higher.
Northern Blot Protocol

See Appendix I: Target Nucleic Acid Transfer to Membrane for suggested gel electrophoresis and treatment conditions.

Notes

Nylon membranes must be used for the following procedure.

The following volumes of buffers and solutions have been optimized for a membrane that is 150 cm². If necessary, adjust the volumes at each step according to the size of your blot.

Once the protocol has been started, do not allow the membrane to dry out.

1. After transfer and crosslinking, briefly rinse the nylon membrane in dH₂O.

2. Add 10 ml of QuikHyb hybridization solution and prehybridize for 15 minutes at 68°C. (Standard overnight hybridization solutions and protocols may also be used.)

3. Place the fluoresceinated probe in a microfuge tube containing 100 µl of sonicated salmon sperm DNA (5 mg/ml).

Note

The probe should be generated with the Prime-It Fluor fluorescence labeling kit using 5–10 ng starting template per ml of hybridization solution.

Heat probe in boiling water bath for 5 minutes. Pulse-spin to collect condensation and store the probe on ice until ready to add to the hybridization.

4. Add the probe to the prehybridization solution and hybridize at 68°C for 2 hours.

5. Wash once for 15 minutes at room temperature in 0.1× SSC/0.1% SDS (150 to 200 ml).

Wash three times for 15 minutes at 60–68°C in 0.1× SSC/0.1% SDS (150 to 200 ml) per wash.

6. Prepare 1 liter of TBSN⁸ in the following manner:

50 ml of 1 M Tris-HCl (pH 8.0)
30 ml of 5 M NaCl
100 µl of northern block reagent
920 ml of H₂O

Rinse membrane in large volume of TBSN (~150 ml) to remove SDS.

⁸ See Preparation of Media and Reagents.
7. Prepare the block solution:

Add 40 μl of northern block reagent to 20 ml of TBSN.

8. Using 10 ml of prepared block solution, incubate for 30 minutes, with gentle rocking, at 60°C. Replace the blocking solution with the remaining 10 ml of fresh solution, and incubate again for 30 minutes.

9. Prepare 800 ml of TBST-N by adding 400 μl of Tween 20 to 800 ml of TBSN. Briefly rinse membrane twice in a large volume of TBST-N (~150 ml/rinse).

Dilute antibody conjugate according to the dilution on the tube label in 10 ml of TBST-N.

10. Decant TBST-N wash and add 10 ml diluted antibody conjugate (prepared above) to membrane. Incubate 1 hour at room temperature, with rocking.

11. Wash membrane in TBST-N at room temperature three times for 15 minutes each time, with rocking (~150 ml/wash). Prepare the assay buffer as follows:

\[
\text{Dilute 960 μl of DEA in 95 ml of dH}_2\text{O} \\
\text{Add 100 μl of 1M MgCl}_2 \text{ and bring to a final volume of 100 ml} \\
\text{with dH}_2\text{O} \\
\text{Mix well}
\]

12. Decant TBST-N. Equilibrate membrane in the assay buffer for 5 minutes at room temperature, with rocking.

Prepare the substrate buffer: dilute 35 μl of CSPD in 7 ml of assay buffer.

13. Decant the assay buffer and add the substrate buffer. Rock for 10 minutes at room temperature.

14. Seal blot in plastic wrap or a heat-sealable bag. When using a heat-sealable bag, cut open two of the three closed edges, open the bag on a flat surface and place the blot inside. Close the bag and remove excess substrate buffer by rolling a pipet over the bag, allowing the buffer to be squeezed out of the edges onto absorbent paper.

When using plastic wrap, place the blot on top of a sheet of plastic wrap and fold the sheet over to cover the blot. Remove excess substrate buffer by rolling a pipet over the plastic wrap or pressing gently with paper towels in order to squeeze buffer out of the edges onto absorbent paper.

Do not allow the blot to dry out completely. Seal the edges of the bag or fold over the edges of plastic wrap and expose the blot to x-ray film (e.g., Kodak X-OMAT AR) for ~30 minutes at room temperature.
15. The blot may be re-exposed for longer or shorter periods of time as necessary. Exposures may also be obtained the following day; the signal will be more intense, but the background will be slightly higher.

Stripping Membranes

Southern Blots

1. Rinse the membrane briefly in dH₂O twice for 5 minutes each at room temperature.

2. Wash the membrane in 0.2N NaOH/0.1% SDS at 45°C for 30 minutes.

3. Rinse the membrane in dH₂O twice for 5 minutes each at room temperature.

 To check that the probe has been completely removed from the membrane, repeat the detection procedure described above, beginning at step 6 of *Probe Hybridization and Detection, Southern Blot Protocol* section.

4. Expose to film overnight. The autoradiograph should be completely blank. Repeat hybridization and detection procedures as described in steps 2–16 above in *Probe Hybridization and Detection, Southern Blot Protocol*.

Northern Blots

1. Rinse the membrane briefly in dH₂O twice for 5 minutes at room temperature.

2. Wash the membrane in 60% formamide/50 mM Tris-HCl (pH 8.0)/1% SDS at 80°C for 1 hour.

3. Rinse the blot twice in dH₂O for 5 minutes each time. To check that the probe has been completely removed from the membrane, repeat the detection procedure beginning at step 6 described above in *Probe Hybridization and Detection, Northern Blot Protocol* section.

4. Expose to film overnight. The autoradiograph should be completely blank. Rinse membrane in dH₂O twice for 5 minutes each time, and repeat hybridization and detection procedures as described above in steps 2–15 in *Probe Hybridization and Detection, Northern Blot Protocol*.

Illuminator Chemiluminescent Detection System 7
APPENDIX I: TARGET NUCLEIC ACID TRANSFER TO MEMBRANE

DNA Gels

1. Perform electrophoretic separation of target DNA; e.g., in a 0.8% agarose gel in TAE buffer at 60 mA for 2 hours. Stain the gel with ethidium bromide and photograph. The gel is now ready for Southern blotting treatment.

2. Transfer the gel to a Pyrex® baking dish and soak it in the solutions as outlined below:

 a. Soak the gel in 20 ml of 0.25 N HCl for 15 minutes at room temperature with constant rocking.

 b. Soak the gel in the following denaturation solution for 30 minutes at room temperature with rocking:

 87.66 g of NaCl [1.5 M NaCl]
 20 g of NaOH/liter of dH₂O [0.5 N NaOH]

 c. Finally, soak the gel in the following neutralization solution for 30 minutes at room temperature with rocking:

 484 g Tris base [1 M Tris final concentration]
 350.4 g NaCl [1.5 M NaCl final concentration]
 Add dH₂O to 3 liters
 Adjust pH to 7.5 with concentrated HCl
 Bring to a final volume of 4 liters with dH₂O

3. Transfer the DNA onto a nylon membrane using a pressure blotter or by capillary action overnight using 10× SSC transfer buffer.

4. Fix the DNA to the membrane by using either the Stratalinker® UV crosslinker on the automatic setting, autocrosslink, or by baking for 2 hours at 80°C. After blotting, stain the gel with ethidium bromide to check that transfer of the DNA is complete.

5. Proceed to step 1 of the Southern Blot Protocol under Probe Hybridization and Detection.
RNA Gels

1. Separate total and/or messenger RNA in a 0.8% (w/v) agarose/0.75 M formaldehyde vertical or horizontal gel.

 Caution *Formaldehyde is a suspected carcinogen and must be used and disposed of in accordance with federal, state and local regulations. Always use formaldehyde in a fume hood.*

Prepare the gel:

Add 0.8 g of agarose to 84 ml of dH₂O
Heat the suspension to dissolve the agarose; then cool to 60°C
Under a hood, add 10 ml of 10× MOPS buffer and 6 ml of formaldehyde and mix well
Cast the gel in a vertical or horizontal gel apparatus

2. Prepare the sample loading buffer:

 Note *The sample loading buffer should be prepared fresh each time it is used.*

720 μl of formamide
160 μl of 10× MOPS
260 μl of formaldehyde
100 μl of sterile dH₂O
100 μl of ethidium bromide (10 mg/ml)
80 μl of sterile glycerol
80 μl of saturated bromophenol blue in sterile dH₂O

3. Dry the RNA sample. Add 5 μl of loading buffer, mixing well to resuspend the RNA pellet. Heat the samples in a boiling water bath for 5 minutes, load on the gel and electrophorese in 1× MOPS buffer at 100 V for ~1 hour or until the dye is about one-third of the way down the gel.

4. Wash the gel in dH₂O twice for 5 minutes each time to remove formaldehyde.

5. Transfer the RNA directly to a nylon membrane using a pressure blotter or by capillary action overnight without pretreatment of the gel. Stain the gel after blotting with ethidium bromide to check that RNA transfer is complete.

6. Proceed to step 1 of the *Northern Blot Protocol under Probe Hybridization and Detection.*
APPENDIX II: PROBE QUANTIFICATION USING THE ILLUMINATOR CHEMILUMINESCENT DETECTION SYSTEM

Label template DNA according to the protocol in the Prime-It Fluor Fluorescence Labeling Kit, and purify the labeled fragments from unincorporated nucleotides using a NucTrap probe purification push column or by ethanol precipitation. The efficiency of fluorescent nucleotide incorporation can be determined by performing serial dilutions on an aliquot of the labeled probe and determining the greatest dilution at which the probe can still be detected using the Illuminator chemiluminescent detection system. Add TE buffer§ to make the final concentration of the DNA 0.25 ng of template/μl (e.g., if 50 ng of template were labeled, the final volume should be 200 μl).

Mix 8 μl of purified, diluted probe with 12 μl of TE buffer (= Dilution #1)
Mix 2 μl of Dilution #1 with 18 μl of TE buffer (= Dilution #2)
Mix 2 μl of Dilution #2 with 18 μl of TE buffer (= Dilution #3)
Mix 2 μl of Dilution #3 with 8 μl of TE buffer (= Dilution #4)
Final dilution 1:1250

Spot 1-μl aliquots of each dilution on a nylon membrane and crosslink using the Stratalinker UV Crosslinker on the autocrosslink setting (120,000 μJ/cm² of membrane). Detect the probe as described in the Probe Hybridization and Detection section of this manual (see step 6 in the Southern Blot Protocol), or by using the abbreviated protocol described below.

The #2 dilution spot should be visible after a 1-minute exposure to X-ray film or the #4 dilution spot should be visible after a 30-minute exposure to X-ray film.

§ See Preparation of Media and Reagents.
Abbreviated Detection Protocol for Probe Analysis

Note *All rinses are at room temperature.*

1. Briefly rinse the membrane, to which the spotted probe dilutions have been crosslinked, in TBS (50 mM Tris-HCl pH 8.0, 150 mM NaCl).

2. Block membrane for 10 minutes at room temperature in Southern block solution (see steps 6 and 7 of the *Southern Blot Protocol*).

3. Rinse membrane briefly in TBST (TBS, 0.05% Tween 20).

4. Incubate membrane for 30 minutes at room temperature with antifluorescein-antibody-AP conjugate (dilute according to tube label in TBST).

5. Rinse in a large volume of TBST (~150 ml/rinse) three times for 5 minutes each rinse.

6. Equilibrate the membrane in assay buffer for 5 minutes (see step 12 of the *Southern Blot Protocol*).

7. Incubate the membrane in substrate buffer for 10 minutes (see steps 13–14 of the *Southern Blot Protocol*).

8. Wrap in plastic wrap, remove excess buffer and expose to X-ray film for 1 minute—the #2 dilution spot should then be visible. The #4 dilution spot should be visible after a 30-minute exposure.
Troubleshooting

<table>
<thead>
<tr>
<th>Observation</th>
<th>Suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak signal</td>
<td>Incorrect membrane used as nucleic acid support. Only nylon membranes are effective in this chemiluminescent method.</td>
</tr>
<tr>
<td></td>
<td>Inefficient transfer of nucleic acids from agarose gel. Restain gel with ethidium bromide following transfer. If transfer is incomplete, longer depurination and/or transfer time may help.</td>
</tr>
<tr>
<td></td>
<td>Poor retention of transferred nucleic acids. Nucleic acid must be fixed to membrane. Use a Stratalinker UV Crosslinker set on the autocrosslink setting (120,000 μJ/cm² of membrane), or another UV crosslinker (consult the manufacturer’s recommendations). Alternatively, bake at 80°C for 1–2 hours under vacuum.</td>
</tr>
<tr>
<td></td>
<td>Insufficient nucleic acid sample loaded into the gel. Electrophoresis of a larger quantity of nucleic acids should result in more target transferred to the membrane.</td>
</tr>
<tr>
<td></td>
<td>Poor incorporation of fluor-12-dUTP into probe. Incorporation of fluor-12-dUTP can be checked by dot blot analysis. Refer to Appendix II. If incorporation is inadequate, allow the labeling reaction to proceed for 30 minutes instead of 20 minutes.</td>
</tr>
<tr>
<td></td>
<td>Low probe concentration due to insufficient template in the labeling reaction. Repeat the labeling reaction using twice as much template while keeping all the other reaction components constant. (Do not forget to boil the probe prior to addition to the hybridization solution.)</td>
</tr>
<tr>
<td></td>
<td>Washing conditions are too stringent. Increase concentration of SSC and/or decrease temperature in the washing procedure, step 5.</td>
</tr>
<tr>
<td></td>
<td>SDS in blocking, antibody-conjugate or wash buffer steps. SDS is a known enzyme inhibitor. Do not replace Tween® 20 with SDS in any of these buffers.</td>
</tr>
<tr>
<td></td>
<td>Insufficient hybridization time. When using QuikHyb hybridization solution, hybridize for 2 hours. If using your own hybridization solution, hybridize for the maximum amount of time (or overnight)</td>
</tr>
<tr>
<td>Nonspecific background signal</td>
<td>Use deionized and filtered (0.2 μm) water to prepare all solutions. Bacterial contamination in the buffers can lead to general membrane background.</td>
</tr>
<tr>
<td></td>
<td>Use carefully cleaned glassware in preparing solutions and buffers. Blocking and antibody buffers should be made fresh for each experiment.</td>
</tr>
<tr>
<td></td>
<td>If the buffer will be stored, add 1 mM sodium azide to the assay buffer to prevent bacterial contamination.</td>
</tr>
<tr>
<td></td>
<td>Do not let the membrane dry out at any point following the prehybridization step.</td>
</tr>
<tr>
<td></td>
<td>Make sure that the antifluorescein-antibody-AP conjugate is diluted according to the description on the tube label.</td>
</tr>
<tr>
<td></td>
<td>Reduce the amount of probe added to the hybridization buffer. Reduce exposure time.</td>
</tr>
<tr>
<td></td>
<td>When working with multiple filters, make sure the buffer volumes are adequate, especially in the hybridization and blocking steps.</td>
</tr>
<tr>
<td></td>
<td>Do not hybridize for longer than 2–2.5 hours when using QuikHyb hybridization solution.</td>
</tr>
</tbody>
</table>
PREPARATION OF MEDIA AND REAGENTS

<table>
<thead>
<tr>
<th>TBS</th>
<th>10× SSC Transfer Buffer</th>
</tr>
</thead>
</table>
| 50 mM Tris-HCl (pH 8.0)
150 mM NaCl | Dissolve 87.65 g of NaCl and
44.1 g of sodium citrate in
400 ml of H₂O
Adjust pH to 7.0 with a few drops of 10 N
solution of NaOH
Adjust volume to 1 liter with H₂O
Sterilize by autoclaving |

<table>
<thead>
<tr>
<th>TBSN</th>
<th>TE Buffer</th>
</tr>
</thead>
</table>
| 50 mM Tris-HCl (pH 8.0)
150 mM NaCl
0.01% northern block reagent in dH₂O | 5 mM Tris-HCl (pH 7.5)
0.1 mM EDTA |

<table>
<thead>
<tr>
<th>1 M Tris-HCl (pH 8.0)</th>
<th>10× MOPS Buffer</th>
</tr>
</thead>
</table>
| 121.2 g Trizma base
Add H₂O to 800 ml
Add ~40 ml concentrated HCl
Stir and adjust final pH to 8.0 with HCl
Bring volume to 1 liter with H₂O. Sterilize by
autoclaving. | 0.2 M MOPS
(3-[N-morpholino]propane-sulfonic
acid)
0.05 M sodium acetate
0.01 M EDTA
Bring to a final pH of 5.5–7.0 with NaOH
Do not autoclave |

REFERENCE

ENDNOTES

CSPD® is a registered trademark of Tropix, Inc.
Pyrex® is a registered trademark of Corning Glass Works.
Tween® is a registered trademark of ICI Americas, Inc.
Kodak® and X-OMAT®-AR are registered trademarks of Eastman Kodak Company.

MSDS INFORMATION

The Material Safety Data Sheet (MSDS) information for Stratagene products is provided on the web at http://www.stratagene.com/MSDS/. Simply enter the catalog number to retrieve any associated MSDS’s in a print-ready format. MSDS documents are not included with product shipments.
Southern Blot
- Transfer and crosslink DNA to membrane
- Rinse membrane in dH2O
- Prehybridize in QuikHyb® hybridization solution for 15 minutes at 68°C
- Hybridize with Prime-It® Fluor probe in QuikHyb for 2 hours at 68°C
- Wash with 0.1× SSC/0.1% SDS for 15 minutes at room temperature
- Wash twice with 0.1× SSC/0.1% SDS for 15 minutes at 60°C
- Rinse membrane in TBS
- Block for 30 minutes at 60°C
- Rinse in TBST
- Incubate with antifluorescein-antibody-AP conjugate diluted in TBST for 1 hour at room temperature
- Wash 3 times in TBST for 10–15 minutes each time at room temperature
- Equilibrate in assay buffer for 5 minutes at room temperature
- Incubate with substrate buffer for 10 minutes at room temperature
- Expose to film at room temperature
Illuminator Chemiluminescent Detection System

Northern Blot

- Transfer and crosslink RNA to membrane
- Rinse membrane in H₂O
- Prehybridize in QuikHyb® hybridization solution for 15 minutes at 68°C
- Hybridize with Prime-It® Fluor probe in QuikHyb for 2 hours at 68°C
- Wash once in 0.1x SSC/0.1% SDS for 15 minutes at room temperature
- Wash 3 times in 0.1x SSC/0.1% SDS for 15 minutes each at 60–68°C
- Rinse membrane in TBSN
- Block for 60 minutes at 60°C
- Rinse in TBST-N
- Incubate with antifluorescein-antibody-AP conjugate diluted in TBST-N for 1 hour at room temperature
- Wash 3 times in TBST-N for 15 minutes each time at room temperature
- Equilibrate in assay buffer for 5 minutes at room temperature
- Incubate in substrate buffer for 10 minutes at room temperature
- Expose to film